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SUMMARY

- -- >?This report contains the theoretical development of a model that describes the

diffusion of interstitial diffusors in SiO . Experimental data supporting this model

and the implications and conclusions predicted by this model are presented.

In summary this model concludes that Pd, Au, Mo, Ta, W, Pt, Ti, and Al are

potential candidates for use in VLSI gate metalization schemes, where as Ag, Cu,

Na, Ni, Mn, Fe, Mg and Ga are unsuitable.

PUBLICATIONS

J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, "Diffusion of Metals in Silicon

Dioxide.", Stanford University., Stanford, California 94305. To be published in the

.q Materials Research Society Symposium Proceedings 13, Nov. 1983

J. D. McBrayer, R. M. Swanson, T. W. Sigmion and J. Bravman, "Observation of

Rapid Field Aided Diffusion of Silver in Metal-Oxide-Semiconductor Structures.",

Stanford University., Stanford, California 94305. Applied Physics Letters. Oct.

1983

J. D. McBrayer, B. L. Draper and R. M. Swanson, " Materials and Interfaces for

High Temperature MOS and CMOS Components.", Sandia Nat. Labs., AIb., N. M.

Proceedings or thelligh Teirperature Electronics and Instrumentation Conference.
S"q



(copy)

Contents

Page
Chapter I. MODELING ......................... 1

A. Interstitial Diffusion ....................... 1

1. Diffusion Constant, DO . . . . . . . . . . . . . . . . . . . . .. . . . .  1

2. Activation Energy of Diffusion, E .................... 2

a. Strain Energy ............................ 3

b. Electrostatic Energy, Eb . . . . . . . . . . . . . . .. . . . .  3

c. Activation Energy, Ea ......................... 5

3. Diffusion Constant for Interstitial Diffusion ............. 5

B. Solid Solubility ................................. 9

1. Neutral Diffusors ............................. 9

2. Singly Ionized Diffusors ..... ................... 10

3. Doubly Ionized Diffusors ......................... 12

4. Triply Ionized Diffusors .......................... 14

5. Calibration of Solid Solubility Calculations ............ 18

References ........ ................................. 19

Chapter II. EXPERIMENTAL ANALYSIS ................... 20

A. Solution of Diffusion Equation .... ................. 20

1. Silver Diffusion ............................... 21

a. Model versus Data ......................... 24

2. Copper Diffusion .............................. 24

a. Model versus Data ......................... 27

3. Palladium, Cold and Titanium Diffusion ............... 27

AI

' • * , *' 9 *"% ' " *"%" ',%'% ",,% '. "- ' " , , ",' . .'''' . , % . .. " "- '" ""'.-, , ."



B. Discussion . . . . . . . . . . . . . .. 28

References. .. .. .. .. ... ... ... ... ... ... ... ...... 30

Chapter HII. IMPLICATIONS AND CONCLUSIONS .. .. .. .. ... 31

A. Implications .. .. .. .. .. .. ... ... ... ... ... ... 31

1. Neutral Case. . ... .. .. .. .. .. ... ... ... ...... 31

2. Ionized Case. .. .. .. .. ... ... ... ... ... .... 36

B. Other Considerations. .. .. .. .. .. ... ... ... ...... 40

1. Conclusions . . . . .... .. .. .. .. .. .. .. .. 41

References. .. .. .. .. ... ... ... ... ... ... ... ...... 42

APPENDDX A.. .. .. .. .. ... ... ... ... ... ... ...... 43

A. Material Parameters .. .. .. .. ... .. ... ... ... ... 43

APPENDIX B.. .. .. .. .. ... ... ... ... ... ... ..... 48

A. General Theory of Reaction Equilibria .. .. .. .. .. ...... 48

B. Law of Mass Action and Equilibrium for Idea Gases. .. .. ... 49

References. .. .. .. .. ... ... ... ... ... ... ... ...... 54

APPENDIC C.. .. .. .. .. ... ... ... ... ... ... ...... 55

A. Diffusion .. .. .. .. ... ... ... ... ... ... ...... 55

1. Flux. .. .. .. .. ... ... ... ... ... ... ..... 55

2. The Transport Equation. .. .. .. ... ... ... ...... 59

B. Solutions .. .. .. .. ... ... ... ... ... ... ...... 60

References. .. .. .. .. ... ... ... ... ... ... ... ...... 66

iv



Illustrations

Page

Figure 1.1. Interstitial Diffusion Activation Energy ............... 4

Figure 1.2. Predicted Neutral Diffusion Coefficients ............... 6

Figure 1.3. Singly Ionized Diffusivity ....................... 7

Figure 1.4. Predicted Ionized Diffusivity ....................... 8

Figure 1.5. Interstitial Diffusion of Neutral Atoms ................ 11

Figure 1.6. Singly Ionized Solid Solubility. ................ 13

Figure 1.7. Doubly Ionized Solid Solubility ..................... 15

Figure 1.8. Triply Ionized Metal Solid Solubility in SiO2. . . . . . . . .. .  17

Figure 2.1. Silver Pile Up at the Si0 2 /Si Interface versus Time .... 22

Figure 2.2. Silver Pile Up at the Si0 2 /Si Interface versus Temperature. 23

Figure 2.3. Copper Pile Up at the Si0 2 /Si interface versus Time.. . . 25

Figure 2.4. Copper Pile Up at the Si0 2 /Si interface versus Temperature. 26

Figure 3.1. Number of Neutral Atoms Passed the Oxide after One Year. 34

Figure 3.2. Number of Neutral Atoms Passed the Oxide after Ten Years. 35

Figure 3.3. Singly Ionized Atoms that have Reached the SiO2 /Si Interface

after One Year ................................... 37

Figure 3.4. Doubly Ionized Atoms that have Reached the SiO2 /Si

Intcrface after One Year ............................. 38

v

, *%



I Figure 3.5. Triply Ionized Atoms that have Reached the SiO2 1Si Interface

after One Year .................................. 39

Figure C.1. Potential Distribution .......................... 56

Figure C.2. Potential Distribution .......................... 57

Figure C.3. Element of a Solid ............................. 59

FE

Figure C.4. Solution to the Diffusion Equation for a Semi- infinite Slab. 64
Figure 0.5. Solution to the Diffusion Equation for a Semi- infinite Slab. 64

Figure C.6. Solution to the Diffusion Equation for a given film thickness. 65

i

Figure 0.7. Solution to the Diffusion Equation for a given film thickness. 65

vi



=VX 77 . a .. . - * ** . *..-

Tables

Page

ITable A.1. Silver Pile Up at 300C . .. .. .. .. .. ... ... ..... 43

Table A.2. Silver Pile Up at the Interface for Various Temperatures 44

Table A.3. Copper Pile Up at SiO2 Interface .. .. .. .. .. .. ...... 45

Table AA4 Copper Interface Pile Up With Temperature .. .. .. .. ... 45

Table A.5. Material Parameters .. .. .. .. .. ... ... ... ...... 46

Table AA6 Material Parameters .. .. .. .. .. ... ... ... ...... 47

Table 0.1. Estimates of 6 < 2kT .* *.. .. .. .. .. .. .. .. 61

vii

Y-~* 
.'



Chapter I
MODELING

A complete derivation of the diffusion equation is found in the Appendix along

with analytical solutions for some interesting boundary conditions. In this chapter

a new diffusion and solid solubility model is presented that allows calculation of

the diffusion and solid solubility activation energy. Comparison of this model with

experimental data is done in chapter II.

A. Interstitial Diffusion

* The diffusion of metals in silicon dioxide is assumed to be interstitial in nature

[1.1, 1.2] . The diffusivity or diffusion coefficient for this type of diffusion is given

by the following expression:

D = De(1.1)

where E. is the activation energy for diffusion, k is the Boltzmann constant, T is

the temperature and D. is the diffusion constant.

To evaluate the diffusion coefficient at a given temperature the values of Do

and E. must be known. The following two sections will allow us to estimate their

values in terms of fundamental quantities.

1. Diffusion Constant, D,

Using the Zener theory [1.1] to predict D0 allows us to write

Do=p b2vifef (1.2)

-1-



i ! where p is the probability of an interstitial jump, b is the jump distance, 77 is the

number of equivalent jump paths, v is the lattice vibration frequency, f is the

i correlation factor, k is the Boltzmann constant and S,, is the entropy.

: From this equation we see that Do depends upon the crystal structure of

the lattice through which the diffusor is traveling. In all cases S,, will be a positive

" number [ 1.11 so that Do will have a lower limit of

Do : p if (1.3)

:' To first order

P, 4f %-z (1.4)

~So that

SDo -- b 2V PZ: .025cm2 Isec (1.5)

is the lower limit for Do. This calculation used a lattice spacing for Si02 of 5 A

! and a lattice vibration frequency of 1013 hzlsec [ 1.3, 1.4]J We will use this number

'a

as an estimate of Do in our future predictions of D.

2. Activation Energy of Diffusion, E.

To calculate the activation energy of metal diffusion in silicon dioxide we

use a classical approach introduced by Anderson and Stuart in 1954 [ 1.5 ]. In this

model they assumet i th he activation energy is the sum of two term ; t e first

is the strain energy between the lattice structure and the diffusing atof, and the

second is the electrostatic energy between a charged diffusing species and the silicon

dioxide lattice. We consider each in the following sections.

- 2 (.



a. Strain Energy

We first assume that the strain energy generated in a silicon dioxide

network due to the enlargement of a spherical doorway, of radius rd, to accom-

* modate an ion of radius r is approximately the elastic energy required to dilate a

spherical cavity from radius rd to r. This strain energy (E,) is given by

E, = 4lrGrd(r - rd) 2  (1.6)

where G is the shear modulus for silicon dioxide, G = 3.12 X lO11dynes/cm2 [1.41,

rd is the radius of the window through which the diffusing atom must pass, rd =

* 0.6 A [1.5], and r is the radius of the diffusing atom. The above expression is

reduced by a factor of two from the exact mathematical solution to account for the

very loose structure of silicon dioxide.

b. Electrostatic Energy, Eb

We will approximate the electrostatic energy change by

Eb - fzze 2  (1.7)
-y(r + r.)

after Anderson and Struart 11.51. where /3 is the finite displacement factor in

angstroms, given by

2.1 - r

3.5 (1.8)

and r is the radius of the diffusing species. The geometric factors are determined

by assuming an interstitial diffusion jump distance of 7 A and an atomic radius

for oxygen (ro) of 1.4 A. The charge states of the diffusing species and the oxygen

in the silicon dioxide lattice are z and zo respectively, for oxygen z, is 2. -y is

approximately the dielectric constant of silicon dioxide, ' = 3.9.

-3--
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Figure 1.1. Interstitial Diffusion Activation Energy. Interstitial diffusion activa-
tion energy calculatedI by the sum of the strain energy and the change
in the electrostatic energy.
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, c. Activation Energy, Ea

Combining the strain energy, E,, and the electrostatic interaction

energy, Eb, yields the total interstitial diffusion activation energy. The material

parameter table found in Appendix A contains the known atomic radii for various

neutral and ionized metal atoms. Using these numbers and those presented allows

the generation of Fig. [1.11. Figure [1.1 allows us to predict the activation energy

for interstitial diffusion in Si0 2 for atoms with known atomic radii.

3. Diffusion Constant for Interstitial Diffusion

Having values for D, and Ea allows prediction, via Eqn. (1.1) of the

interstitial diffusion coefficient for elements that we believe diffuse interstitially.

Figures [1.2 - 1.41 present the calculated Diffusivity for various metals and their

ions in Si0 2 . The data used in the calculation of the figures are found in Appendix

A. Values appearing in the tables in brackets represent estimated values, for ele-

ments which no published data could be found.

In the next section we derive an equation for determin'ng the solid

solubility for these metals in Silicon dioxide.

P -5

" *. - .



TEMPERATURE (°K)
1000 800 600 500 400 300

i 6 -Cu, Mn
i-i Fe

S-Pd

'. 108 -- A

-Ga

Cii -u Mo-

101 Au-a

E

lb-12

E ~10 - T -

10-14

Na

11 15 19 23 27 31 35 39
1/kT (1/eV)

Figure 1.2. Predicted Neutral Diffusion Coefficients. Calculated Diffusivity for the
indicated metals in silicon dioxide as a function of temperature.
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4•q".,B. Solid Solubility

The solid solubility of metals in silicon dioxide is derived from solutions of the

thermodynamic equations for each possible diffusing species. See Appendix B for

derivation of the law of mass action and chemical potential.

* The important assumption that makes this derivation justifiable is that the

ideal gas law holds for the loose structure of silicon dioxide. This allows us to calcu-

- late the concentration of metal in silicon dioxide as a function of the concentration

of metal vapor. In the following sections we will derive the concentration of neutral,

singly, doubly, and triply ionized metal atoms in silicon dioxide or any other loosely

*bound lattice utilizing the above assumption.

1. Neutral Diffusors

Using the law of mass action we write the concentration of neutral metal

atoms [Mo] in silicon dioxide as

-

[MIX] = [Mga,]e-ing (1.9)

where Eint is the total internal energy and is the sum of the internal energy of the

silicon dioxide, EM.., plus that of the gas, EM,.a. The internal energy, in this case,

is equal to zero since we are assuming that the ideal gas law holds, i.e. EMo. -

,.' EM,,..k is the Boltzmann constant and T is the temperature. The concentration

of metal that sublimes from the solid in accordance with the ideal gas law, [Ma.

can be expressed as

[ M ga l = ( N IO flT C -1 ) ,LfllO + (D T X lO IO ) (1.10).

4%

S.. .v ...- .4.'.... , - -- .- " - • - . '. - " .4 -. -. - - - -, - 4 . .--4 i . i 4: ::
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In the above equation A, B, C, and D are constants that describe the vapor pressures

for each metal. [1.6] See material parameter table in Appendix A. N is Avogadro's

number, 6.023 X 1023 atoms/mole. R is the gas constant, 62396.0 torr cm 3 / K mole

and T is the temperature in degrees Kelvin.

Thus for the neutral case, the amount of metal entering the silicon dioxide

from the overlying metal film is that predicted by the ideal gas law. Substituting

the above constants into Eqn. (1,10) and rearranging results in

9-(Eint+AklnlO-(kDT 2 
XO-31lO)-kT(C

-
t)l1nT)(MIX]-= 9.653 X 10(B+"')e_ kT (1. 11)

which is plotted in Fig. [1.5] for various metals.

2. Singly Ionized Diffusors

To find the solid solubility for singly ionized diffusors the following reac-

tion equations must be solved:

M, , I Mga, AHsub (1.12)

4M+

Mgaa + Mas + eg-aa AEo (1.13)

Mgas -- OX AEimage + AEbinding + AEother (1.14)

ga's OX AEimage + X + AEother (1.15)

-10-
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Figure 1.5. Interstitial Diffusion of Neutral Atoms. Solid solubility calculations for
the interstitial diffusion of neutral atoms. Pd,Mo,F'e,Au,Cu ,Ta,W,Ni
and Pt have solid solubilities less than 101°cm 3 .
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In the above equations the heat of formation for each reaction is shown to the right

of each equation. AHub is the heat of sublimation and is known for all elements,

(1.3,1.4]. AEion is the ionization potential and is also known for most elements,

[1.3,1.4]. AEbinding is found as described in section 2b. X is the electron affinity.

AEimagc is the image charge for both the positive ion and the negative electron.

AEothT is any other heat of formation, such as a catalyst to the diffusion process.

Combining all the unknown heats of formations into one term,

Eemainder, gives

AEremainder :-- 2 AEimage + 2AEother + X (1.16)

Combining the above reaction equations results in

,Sol + MIX + eo-Z AHaub + AEion - AEbinding - AEremainder (1.17)

for the metal solid solubility for thesingly ionized diffusor.

We can deal with this equation in a manner similar to the neutral case,

which gives the following expression for the solid solubility of singly ionized atoms

in Si02 (See Fig. [1.6]).

• B _ -(E int+kAin[O-(k7
"2 DX [ -

3 
InIO)--k.J(2C+l)nT)

[M+] = 1.527 X 20(:+17)e 2kt7 (.18)

3. Doubly Ionized Diffusors

For doubly ionized diffusors we can derive the following reaction equation

M3 o I  M M + + + 2e AII3ub + AEio + 2AEremainder (1.19).

In this derivation we have assumed that the unknown remainder heat of formation
is twice that of the singly ionized cae. Applying the law of mass action in a manner

similar to the previous twn cases results in

- 12 -
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IMgaal -Xa,-X m++ 2 X _ (1.20)* [M++I][e] 2

where X for each species is defined in Appendix B. We also know that

[M++] = 2[e-] (1.21).

Combining these equations and reducing we obtain

=t [M++ = 4[Mgal(/"2rmekT), :&,t
[M++] = k[e.a3 (1.22).

Where Eint is the internal energy of each species

AEint = 2AE e - - AEgaa - AEM++ (1.23)

or

Ei=t = AEion - AEbinding - 2 AEremainder (1.24)

The solid solubility for the doubly ionized case is then

[M ++] 6.084 )-(Ent+kAn--(LT2DXO-3LnlO)-T(c+2)nT)[M., 604 01+3 3kT (1.25)

and is plotted in Fig. [1.71

4. Triply Ionized Diffusors

The solid solubility of the triply ionized diffusors, [M+++] is found using

an approach similar to the other cases and results in.

[M ++ +. I == 2, M ,] \ _ -_ ) "'
Ox 27~~ [M, (1.26)2

Assuming that the unknown heat of formation is three times that of the singly

ionized case. We obtain

AEint -. A binding 3 A Lremaindcr (1.27)

- i.4-
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Figure 1.7. Doubly Ioniz.ed Solid Solubility. Calculated solid solbility for doubly
, ionized atoms. Mn and Fe have values >,- 10 22cm - 3 while Na has a

value below 101°cm - 3 .
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3'e~

7. 77 7 7

or in terms of each species

A =nt  3AE,- + AEM+++ - AEgas. (1.28)
%Ox

Substituting known values results in

1 -(Eint+AklnIo-(kT
2 DX to-

31n0)-(2C+7)kTnT)

[M + + - 4.38 X I 4(1G+)e 4kT (1.29)

which has been plotted in Fig. [1.8].
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In general the solid solubility takes on the form of

J -Ee ffective

Cl -- Ce W (1.30)

for all cases. A negative value for Ee fective implies that the atom in question would

rather be in the oxide than out. Values for Eeflective for various elements are found

in Appendix A.

5. Calibration of Solid Solubility Calculations

The figures shown in this chapter were based on a value for AEremainder

calculated from the measured solid solubility of silver in silicon dioxide. This

calculation assumes that all of the silver in the oxide was put there while in a singly

ionized state. In light of the data presented earlier which showed no detectable

diffusion for unbiased samples this is quite reasonable.

Using an upper bound, as observed with RBS, of [Agox] = 3 X 1018 cm- 3,

we find AEremainder = 8.87eV. Using this value in the following equation

Eint + kAlnlO - (kT 2D X 10-3n10) - kT(2C + 1)InT
AEeifective = 2 (1.31)

we obtain a value for AEeffective of approximately 0.5eV for singly ionized silver

in Si02.

For the doubly and triply ionized cases AEremainder was taken to be

9eV since we can't be sure of the exact values without more accurate data for the

ionized radii, image charge, etc. However, these values allow us to see trends of

the solid solubilities in silicon dioxide and should be close to the actual values. In

- the following chapter we compare this model with actual experiments to test its

- validity.

- 18-
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Chapter II
EXPERIMENTAL ANALYSIS

In this chapter a simplified expression for the diffusion equation which

allows extraction of the diffusion coefficient from experimental data is developed.

The extracted diffusion coefficients and the observed activation energies are then

compared with the values predicted by the theory developed in chapter I.

A. Solution of Diffusion Equation

.-. A complete solution to the diffusion equation is given in Appendix C and Ref.
[2.11. In this section we present a solution to the diffusion equation that holds when

the electric field, E, dominates the diffusion process and still meets the following

critria,

e < k- T X 1022 V/CM (2.1)

Then the flux can be written as (see Appendix C)

J =q - D C (2.2).
6X

In this equation q is the charge of an electron, b is the distance between potential

barriers, about 5 A. y is the mobility, q -- D, C is the concentration and x is

the distan.ce into the silicon dioxide.

When the electric field term is large compared to the concentration gradient

Eqn. (2.2) can be further reduced to

J = (2.3).

.. - 20 -
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In the following this equation is used to determine the diffusion coefficient since

the other parameters are known.

1. Silver Diffusion

Using measured data on silver diffusion in silicon dioxide at 300°C we

derive a flux for silver through silicon dioxide. This is done by dividing the amount

of silver observed to pile up at the silicon/silicon dioxide interface during a BTS

by the anneal time. In Fig. [2.1] we show how the amount of silver observed

.-. at the interface in atoms/cm2 increases with time. The slope of this plot is the

flux of silver through the silicon dioxide. The solid solubility of silver in silicon

dioxide at 300'C was observed with RBS to be 3 X 1018 cm- 3 as an upper bound.4.

Combining this number along with an electric field of 5.2 X 104 V/cm and a flux of

1.43 X 1012 cm- 2 /sec, see Fig. [2.1] we obtain by rearranging Eqn. (2.3)

DAg = 4.5 X 10-13cm 2 /sec

at 300 0C.

Using measured silver diffusion data in silicon dioxide at various tempera-

tures Fig. [2.2 j can be drawn. The slope of this plot is the activation energy, E -a,

for silver diffusion in silicon dioxide, Ea is approximately 1.24eV.
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a. Model versus Data

The model developed in Chapter I expresses the diffusion coefficient

C," by Eqn. (1.1) and the solid solubility by Eqn. (1.30). Combining these two

equations with Eqn. (2.3) we write the flux of atoms through the Si0 2 as

CD 0 C e -(Ediffus ion + E.olidolubility).... ' t = V oUoe k' (2.4)
kT

We see from the above equation that the observed activation energy is equal to the

sum of the activation energies defined in Chapter I. From Chapter I the predicted

activation energy for diffusion is 1.3eV and the predicted solid solubility activation

energy is 0.5eV. The sum of 1.8eV is to be compared with that observed of 1.24eV.

Evaluating Eqn. (1.1) at 300'C for silver results in

DPredicted = 0.025e-7 -- 9.2 X 10- 14cm 2/see (2.5)
Ag 

/

which is to be compared with our observed value at 300°C of DAg = 4.5 X

10- 13cm 2/sec. We will reserve further discussion on these comparisons for the

discussion section.

2. Copper Diffusion

* To calculate the diffusion coefficient for copper we use the model developed

in Chapter I to estimate the solid solubility of singly ionized copper in silicon
dioxide at 450C to be 1 X 10 18 cm-3. This assumption is necessary since the

solid solubility of copper in silicon dioxide is below the detection limit of the RBS.

This number should be a high estimate and therefore will give us the worst case

answer. This approach also assumes that all the copper in the Si0 2 is singly ionized.

Using the observed data for copper we can make plots similar to Figs. [2.1,2.2]

-24-
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dioxide, see Figs. [2.3,2.4 1.

We attribute the saturating of the data to the oxidation of the copper
during BTS. After the copper has oxidized to the Cu/SiO2 interface we lose both

4 adhesion and electrical contact resulting in loss of the field aided diffusion. Before

oxidation of the copper dominates, we find the observed activation energy to be

1.8eV and the flux of copper atoms through the silicon dioxide at 450*C to be

approximately 1.0 X 1013cm 2 /sec. Equation [2.3] can be used to calculate the

diffusivity of copper in silicon dioxide at 4500C with an electric field of e = 5.2 X

104 V/cm, resulting in

Du(450 - C = 1.2 X lO 1 1 cm 2 /sec (2.6).

S'

%.''

%.p

a. Model versus Data

The result of Eqn. (2.6) is in reasonable agreement with the value

of copper diffusion at 450°C predicted by Eqn. (1.1)

predicted - 1.2D5 0.025e-T = 1.2 X 10-1 0 cm 2/sec (2.7)

Summing the diffusion activation energy, 1.2eV, and the solid

solubility activation energy, 0.64eV, results in the total activation energy, 1.84eV,

which compares nicely with the observed value of 1.8eV.

3. Palladium, Gold and Titanium Diffusion

The diffusion of gold and palladium in silicon dioxide was undetectable

using both C-V and IBS techniques. This was expected in light of our model which

-27-
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predictes a very low solid solubility in Si02 for these metals. Thus both palladium

and gold are potential candidates for low temperature processing.

Titanium was found to react with silicon dioxide forming a Titanium

oxide compound and is therefore not expected to be an interstitial diffusor. This

agrees with what was observed experimentally. Also since Titanium is quite reactive

. the model presented earlier is not expected to apply.

B. Discussion

4. A comparison between the experimental results and those predicted by our

-' model is quite good. Excellant agreement is found for copper. A slight discrepancy

was found in the case of silver in that the theory predicts a lower diffusivity. In

light of experiments that revealed the catalytic behavior of the atmosphere in which

'4 the experiment takes place, we propose the following explanations:

(1)The strain compouent of our model could easily be modified by the presences

of a molecule or atom which changes the effective window, (rd) through which

diffusion occurs. The presence of such molecules or atom3 could also have an effect

on the electrostatic energy. If they were charged they would be able to shield or

enhance this effect and change the activation energy from that predicted by our

model.

(2)These molecules or atoms could also modify our description of the solid

solubility by adding another heat of formation into the equations. If we consider

the silicon dioxide as having a band gap then the addition of a molecule or atom

into Si0 2 changes the Fermi energy. This change in the Fermi energy may lower

the ionization energy of the metal atoms and therefore change the solid solubility.

This comparison of our model with experimental data illustrates the usefulness

or this approach. More work is needed before this model is completely quarititative.

In its present state, however, it can be used to prcedict which metals are likely

-28-
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Chapter III
IMPLICATIONS AND CONCLUSIONS

In this chapter recommendations for metals which maybe used successfully for

VLSI applications are presented. Reasons for these conclusions are also presented.

Futher results of experiments, not yet documented, are presented in support of these

predictions.

A. Implications

To determine which metals are viable candidates for VLSI we need to define

a criteria to compare each metal against. In the sections that follow we use the

number of metal atoms found at the Si0 2 /Si interface or an equivalent as our

means of comparison. Further, we define an integrated area of 1010 cm - 2 or greater

as the point of failure for a metal at a given temperature.

We present the neutral, singly, doubly and triply ionized cases for most of the

atoms listed in Appendix A. For some atoms it is obvious that the present approach

doesn't apply. Discussion of these discrepancies will occur later.

1. Neutral Case

For the neutral case we solve Eqn. (2.2) with e - 0 and the following

boundary conditions:

C(O, ) C



C(oot)= 0 (3.1)

C(X,0) =0.

Where C is the concentration and C, is the solid solubility.

The solution is

C(x, t) = C, ,- c (3.2).
* L J

where C, is given by Eqn. (1.30), D, the diffusion coefficient, is given by Eqn.

(1.1) and t is the time in seconds.

To get from this equation to our definition for failure we must integrate

from x to infinity. Here x is the location of a fictitious silicon/silicon dioxide

interface. This gives us

CN == C, 2 e[4t - x (3.3).
C ( ) f 2(Dt)

The above equation yields the number of atoms which have passed the

point z in a ni-infinite slab of silicon dioxide. This simplified view represents the

case where the metal atoms pile up at the Si0 2 /Si interface or diffuse into the

silicon substrate but do not interfere with the diffusion process. The value for x

is the silicon dioxide thickness that we wish to consider. Figure [3.11 is a plot of

this equation versus temperature fr an oxide thickness of 1000 A and a time of I

* 'year. It can be seen that all the atoms considered do not cause any failures, as we

have defined failure, until very high temperatures. Figure [3.21 is a similar plot,

., however the time is 10 years. We observe only a slight increase in the number of

neutral atoms that passed through the silicon dioxide for the ten year case versus

the one year case. This result implies that for the neutral case, the solid solubility

32 -
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dominates the diffusion process in the silicon dioxide. The metal concentration

reaches solid solubility rapidly and no further diffusion takes place. Fortunetly the

solid solubilities for all most all metals is small enough not to rule any out as possible

candidates for VLSI applications.

3.
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2. Ionized Case

Equation (2.3) is used for the ionized case to predict a failure. Using the

same definition of failure, i.e. 1010 atoms/cm2 or more that reach the interface for

a given time and temperature, as in the neutral case. We rewrite Eqn. (2.3) as

CNt = -DCet (3.4).
kT

Where CNt is the number of atoms that reach the interface per square centimeter.

D is the diffusion coefficient, Eqn. (1.1). C is the solid solubility, Eqn. (1.30). e

is the electric field, 106 V/cm. T is the temperature, k is the Boltzmann constant

and q is the charge on a electron. t is the time.

For the ionized case an additional criteria for failure is needed, the value

* of the electric field. We set the field at a value of 106 V/cm. Using this value for the

electric field and one year for the time, Eqn. (3.4) is plotted against temperature,

Figs. [3.3 - 3.5], to reveal the failure rate for ionized metal atoms diffusing in

Si02 . To evaluate failures after ten years or any other length of time, we simply

multiple the values in these figures by the length of time in years.

These curves depend on the silicon dioxide thickness only in the deter-

mination of the effective electric field. Thus for this approach to be valid the solid

solubility of each metal must be reached quickly. The observed behavior of copper

and silver support this assumption.

Figure [3.3], the singly ionized case, predicts the most failures. Those

atoms that ionize easily should be considered very carefully beforc using in VLSI

applications. Metals to the left or and including palladium in Fig. [3.3] should be

safe for for VLSI applications.
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B. Other Considerations

The model presented so far only predicts the diffusion and solid solubility of

atoms in and through silicon dioxide. There are two major considerations that can

dominate and invalidate the present approach. The first consideration is when the

,. atom in question reacts with the silicon dioxide and the second consideration is

whether the atom reacts with any other substances present.

Examining the atoms found in Appendix A. we see that both titanium and

aluminum reduce silicon dioxide. This reaction is the reason that aluminum has

worked so well as a metallization system. Arsenic, phosphorus, boron and sodium

are know network formers in silicon dioxide [3.1 -3.51 and therefore diffuse by

methods different than those presented in this work.

All of the atoms we have considered, except for gold and platinum, form

stable oxides. Oxidation of the diffusing atom will obviously cause a change in the

predicted diffusivity and solid solubility. The data for copper is a vivid example.

* Another example is manganese which oxidized so rapidly that continuity of the

electric field was lost very quickly. Even so manganese reached levels detectable by

RBS in the silicon dioxide, in further support of our model.

* The reaction of the diffusing atom with any substance will also alter its

predicted behavior. It is believed that a reaction of some diffusing atoms with

w Ler molecules has a catalytic enhancement on the diffusion of these atoms. Once

an understanding of this reaction is obtained it can be easily incorporated into our

model.

In addition to the above considerations, a metal that is to be considered for

VLSI applications must also have good adliesion, be easily etched, delineated, form

ohmic contacts with silicon and be easily applied.

-- 40 -



1. Conclusions

From this study in can be concluded that Pd, Au, Mo, Ta, W, Pt, Ti, and

Al are potential candidates for VLSI metalization.

It is possible that gold should be eliminated due to its well known diffusion

in silicon. Others aspects, such as adhesion, low contact resistance and easy chem-

mical processing should also be considered before any final choice is made.
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APPENDIX A

A. Material Parameters

In this section the material parameters used in the interstitial diffusion model

are presented as well as summary tables of the copper and sliver data.

Table A.1.

Silver Pile Up at 3000C.

* 4Diffusion of silver through silicon dioxide by the pile up of silver at the interface.

A time time Area @ HsSiO (N (N
(sec) (sec) Interface

(cts) (cts) (cm- 2 ) (cm- 2 /sec)

2700 660 1100 7.99x1014  2.96x101 I

2700 1. 19x1012

5400 3000 1025 3.98x10 15  1.33x1012

5400 1. 75x1012

10800 10640 1060 1.34x1016  1.24x1012

10800 1. 47x10 12

21600 24234 1100 2.93x1016  1.36x1011

-'43-
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Table A.2.

Silver Pile Up at the Interface for Various Temperatures.

90 minute anneals

4,

temp Area @ 2 (Nt)A 1/kT
0C Interface (eV)

(Cts) (cts) (cm-2 )

275 598 960 8.8x10 14  21.18

300 25/5 1029 3.98x10 15  20.25

I 9.1xO14

335 6167 1081 8.95x1015  19.09

a = 4.3x10 15

350 15936 1088 1.84x10 16  18.63

a = 5.65x10 15

365 32182 1068 3.06x101 6  18.19

o.. a 5.11x10 15

. 455 24200 1090 15.94

4

4%-5

-'.
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Table A.3.

Copper Pile Up at SiO2 Interface.

450*C with a positive electric field of 5 X< 104 V/CM.

A time time Area @ H SiO (N )(N )/time
(sec) (sec) interface Si 2dutc

(cts) (cts) (cm-2 ) (cm-2/sec)

3600 9765 1194 2.99x1016  8.32x10 12

3600 1.50x1016  4.17xj1 2

7200 14525 1139 4.67x1016  6.49x10 12

7200 2.83x10 15  3.93x1011

*14400 15413 1162 4.86x1016  3.38x1012

* Table A.4.

Copper Interface Pile Up With Temperature.

Copper silicon/silicon dioxide interface pile up at various temperatures.

temp Area @ H SiO (N ) /T(V
OcInterface Si 2 t cu1/T eV

(cts) (cts) (cm-2

400 1621 1083 5.48x1015  17.24

450 14525 1139 4.67xj1 6  16.05

500 18679 1111 6.16x1016  15.01

350 230 1111 4.29x10 14  18.63
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APPENDIX B

A. General Theory of Reaction Equilibria

For the case of constant temperature and pressure the Gibbs free energy may

be written as [B.1]

G =U - TS + PV (1.1)

since it is at a minimum with respect to the proportions of the reactants. The

incremental Gibbs energy may be written as [B.1],

? .:

dG = dN  = dU (B.2)

where yj is the chemical potential of species j and dNj is the change in the number

of molecules of species j.

The change in the Gibbs free energy in a reaction is seen to be closely related

to the chemical potentials of the reactants [B.1]. In equilibrium this change must
be zero for constant P and T.

dG = jdNj 0 (B.3)
j
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The change, dNj, in the number of molecules of species j is proportional to

the number of moles of species j as determined by the balanced chemical equation

of reaction. Let vj denote this coefficient and let Ai denote the chemical compound

of species j. Then the balanced chemical equation can be written as

,ZLjAj = 0 (B.4)

We can write dNj as:

dNj = vjdN' (B.5)

where dN' is the increment in the number of times the reaction takes place [B.1].

Combining Eqn. (B.3) and (B.5) results in:

dG =ZpjjdN' 0 (B.6)
": j

,* . simplifying

E j = 0 (B.7)
3-

Equation (B.7) must be satisfied to be in equilibrium at constant temperature

and pressure.

B. Law of Mass Action and Equilibrium for Idea GasesY'.

' If we assume that each constituent behaves like an idea gas, the chemical

potential, ;4j, of identical polyatomic molecules is found as follows [13.1 :

'_S.
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Each molecule has rotational and vibrational motions so that the total energy,

Et, of a molecules' orbital t is the sum of two parts,

Et - int + En (B.8)

where Eint refers to the internal degrees of freedom and En to the translational

motion of the center of mass of the molecule. For translational motion it can be

shown [B.1] that

En= -i(--J (B.9):"2= E" =2m L

where n is the quantum number of the translational orbital and L is the is integer

times half a wave length. Eint includes the vibrational energy of the molecule on

the force constant and the rotational energy of the molecule [BA].

In the classical regime the probability that a given translational orbital, n, be

occupied is always very small in comparison with one. When we write the grand

sum -f the orbital in this regime we may neglect terms in the X2 and higher powers

of X, because such terms correspond to occupancy of the orbital by more than one

molecule.

Accordingly, the grand sum for the system of all orbitals, t, for which the

translational quantum number is precisely n and for which the internal quantum

number i assumes all possible values is

"= 1 + ( )i+En)/kT

since we're assuming the classical regime we may ractor e-E,"/kT to obtain
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z = 1 + ,e-EkTj e- Ed kT  (B.11)
.4 i

Note that X is the absolute activity, > = ep/kT. We define

.4

"-- eEitlT (B.12)

as the partition function of all the internal degrees of freedom.

So equation (B.11) becomes

Z = 1 + XzinteEn/ kT (B.13)

The probability that the translational orbital, n, is occupied irrespective of the

state of internal motion of the molecule, is given by the ratio of the term in X to

the grand sum z.

I (E) ziteEn/kT ; XZinte -  (B.14)1 + Xzinte-E/kT

for the classical regime which holds when f(En) < 1.

If we now compare this result to that of an idea monatomic gas [B.1 we note
.4

that the only difference is the addition of the Zin t term and X becomes:

3

X N(2r h 2 ) Y 1 (13.15)i X = e /kT ---V mjkT Zi-nt

and thus

-. 5
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If we let C3  N/V denote the concentration of molecules of species j we can

rewrite equation (B.1.6) as

-%

=~ ~ kTnC + k~( ) + Ei (B.17)

Note that Ein includes all internal degrees of freedom regarding vibration,

rotation, electronic excitations and all the nuclear orientations.

This result for the chemical potential is the sum of the term in the logarithm

of the concentration and a term that is a function only of temperature:

i4 = kTInCj + kTxj(T) (B.18)

where we define

S3 2r l2 +(1.19)

Note that the internal free energy e is an additive term in the chemical

STrpotential of the tth chemical component.

The equilibrium cndition E nyj f0 now becomes

F, =ij -- T - E(ilnCj + vXj) 0 (13.20)

or

-52-
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ZInCq = - j (B.21)

or

JJC~' e- = i K(T) (B.22)

Where we define the equilibrium constant Kc(T) by

Kc(T) = e- Z,xi (B.23)

Equation (B.22) is known as the law of Mass Action.

.i
j

'%
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APPENDIX C

A. Diffusion

Diffusion is the random molecular transport of material to relieve a non-

equilibrium condition. This transport is driven by a concentration imbalance where

on the average the areas with a higher concentration of material loses or trans-

. ports material to areas of lower concentrations. Additional driving forces such

as electromagnet fields or perhaps gravitational fields can aid or hinder diffusion

depending on their direction.

In this section the diffusion equations for positively and negatively charged

particles will be derived. First we will derive the flux for a charged particle and

the transport equation which determines their distribution in a solid. Then we will

present solutions to the transport or.diffusion equations under various conditions

and assumptions.

1. Flux

Figure [ 1 represents the potential hills formed by the atoms of a crystal.

These potential hills impede the motion of any charged particles within the crystal.

The height of the potential barrier IV is typically of the order of electron volts
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Figure C.1. Potential Distribution. Model of ionic motion within a crystal with
zero electric field.

C.1 -C.3] in most materials. The distance between successive potential barriers,

a, is of the order of a lattice spacing which is several angstroms.

If a constant electric field is applied, the potential distribution as a func-

tion of distance will be tilted as shown in figure 121. This will help positive ions

move to the right and hinder their motion to the left. With the field applied the

flux, J, (J _ number of any species passing through a unit area in a unit time)
at z will be the average of the fluxes at position (z- 2) and at (x + ). Using the

notation shown in figure [2],

J() = (JI - J2) + (J3 - J4) (C.1)

2

Consider the component J. It will be given by the product of (1) the

density per unit area (normal to the direction of the flux) of particles at the potential

valley at (x -- a), (2) the probability of jumps of any of these particles to the valley

at z and (3) the frequency of attempted jumps, U.

J1 aC(x - a)e-k'1 2a&) (C.2)
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Figure C.2. Potential Distribution. Model of ionic motion within a crystal with an
applied electric field.

where aC(z - a) is the density per unit area of particles situated in the valley at

(x - a) [ C.2, C.4 ]and the exponential factor is the probability of a successful jump

from the valley at (x - a) to the valley at x [C.4, C.5]. Note the lowering of the

barier due to the electric field, e.

Likewise

J2 = aC(x)e-j (w+-a)u (C.3)

J3 = aCx).-,-")v (C.4)

J4 " aC(x + a)e- t(w+ a6). (C.5)

Substituting these expressions for J1, J2, J3, and J4 into equation (C.1)

we get

=v -9 qaC as2:1 _e :[: " )--" , + -a. (C.)
= - a)e C()e , +C(x)e-L' -C(x+ (0.)
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making the assumption that [C.6 ],

C(xTa) C(x)Ta - ) (C.7)
ax

J becomes

j = -e , C() (2e -2] ) -a aC(x)(e42 + e(.8)2 a

Since [C.6] sinh z =" • " and cosh z =

J = -Dcosh(qa OC(+) + .sinh q
+ -2kTJ Ox a -k)C(x) (0.9)

where D = va2e-- "

In the special case where & < 2 the cosh z I- land the sinh z v-

[C.6], reducing J to,

J=-D aC(x)+leCx .0
Ox + pCC(x) (0.10)

where j = (&)vae-'7 - &D. By the Einstein Relationship, iA = &D, D is

known as the diffusivity and j is the mobility.

A similar derivation for the motion of a negatively charged species results

in,

" (,[qa(\" OC( x) _20 . qa&\
J(x) = -Dcoshl- -a Cx sinh (-----10(x) (C. 11)

k2k'L' ax a kUT)

where D -a Te& q- kT
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Figure 0.3. Element of a Solid. No matter is created or distroyed within element.

When e~ <2kT the flux for a negatively charged particles becomes,

cC(x)J(x) = -D ax - MeCC(x) (C.12)

2. The Transport Equation

Figure [3] shows a small element of a solid which is still large compared

to atomic distances. Within this volume no material is formed or consumed. An

inventory of the material contained within the element bounded by the planes at

position x and x + Ax yields

Increase in the density per unit area (C.13)
Jim - Jout - unit time

In terms of concentrations, we write

ac'
Ax-- = J(x) - J(x + Ax) (C.14)at

where C' is the average concentration within the element.
When Ax 0- 0, C' " C(x) and J ------- r-f find that
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ac(x) aJ(X) (.15)
is ~~a tharnprteuto x

which is the transport equation in one dimension. If we expand our thinking to

three dimensions the transport equation becomes

-div J(x) (C.16)
at

Combining the transport equations and our equation for flux, equation

(C.10) results in

ac(x) a r , (qat OC(x) 2D () 1
= __ Dc -hla + sinh )C(x)] (.7at axl 2kT) ax a 2kT,~ j (.7

If we now assume that D and e are independent of x and < 2kTwe

may write equation (0.17), the one dimensional diffusion or transport equation, as

a() oC(,) e9c(x) (C.18)
:'8t : DiOx2  P Ox

Likewise for negative species under the same assumptions

OC(x) -DCZ=,-O DO 2  + 6, oC(x) (C.19)!at ax2  09

B. Solutions

Before solving the one dimensional diffusion equation let us reiterate the as-

sumptions imposed so far and comment on their validity:
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(1) Diffusion only in one dimension, normal to the surface.

(2) The electric field and the diffusion coefficient are independent of time and

direction.

4(3) e <2kT

qa

(4) Solid is homogeneous.

Assumption one is reasonable since we are considering the diffusion of charged

particles and thus diffusion is enhanced parallel to the direction of the electric field.

The electric field is independent of time and direction if the solid is locally uniform.

The assumption that D is independent of time and direction requires a, 11 and w be

independent of time and direction. This is true if the solid is locally homogeneous.

To see if e < 2kT we assume a i-O A which is a conservatively high value

for a lattice spacing. Then

2kT
qa = 1723.40T V/cm (C.20)

where k is the Boltzmann constant and q is the charge of an electron.

Table 1 shows 2 for different values of temperature. We see that fields ofqa

0 - 10 5 V/cm are probably small enough to make assumption three valid.

Table C.1.

Estimates of e < 2k

2kt
Temp *K qa

300 5.170x10 5 V/cm

600 1.034x10 6 V/cm

700 1.206xi0 6 V/cm
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Assumption four is valid since our samples are Czochralski grow silicon with

thermally grown silicon dioxide and is therefore homogeneous, at least locally.

Using these assumption we solve the diffusion equation in one dimension for

positive particles, equation (C.18), for the following boundary conditions.

(1) C(Ot) = C,.

(2) C(oo, t) = 0.

(3) C(x,0) = 0.

where C, is the solid solubility of the particle in the silicon dioxide. The solution

!! can be shown to be [C.7-C.9].

C-z = -OtreI .I+e'erf c ~ I(C.21)=2 f 2(D) )+el 2(Dt)12J

Figure [4] is a plot of this equation for 300'C, 1.5 hours, e = 5.2 X 104 V/cm

and a solid solubility of, C,, of 3 X 101 8 cm- 3 . Different diffusivities are shown in the

figure to allow a comparison with the silver data presented eatlier. This solution to

the diffusion equation models reality when the substance the particles are diffusing

through is semi-infinite. As a further example figure [ 51 is a plot of equation (C.21)

when T = 100 0C, t = one year, e = 10V/cm, C, = 3 X 1018 cm- 3 , and the

diffusivity takes on the values shown in the figure.

As an approximation to the case when the diffusing particles pile up at the

Si0 2 /Si interface, equation (C.18) may be solved with following boundary condi-

tions.

(1) C( o,t)= CS.

(2) C(x, 0) = 0.

(ac(A -0- 3) --0I
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where a is the film thickness.

The solution to these conditions is [0.7 - 0.9 ,

C(x, t) = - 2 e ePDtk sin((~ 2 T)z)

(0.22)
where the 3n's are the positive roots of

tan((i2 - (qe )2)a) -- 2kT (p~2 (q&2) (0.23)

Figure [6] is a plot of this equation for 300 0 C, 1.5 hours, e = 5.2 X 104V/cm,

SCa = 3 X 1018cm - 3, and a films thickness of 5700A. Figure [7] is a plot of equation

(0.22) with T= 100 0C, e = 106V/cm, C, = 3 X 10 18 cm - 3 , a " 5700 A, and a

time of one year.
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Figure C.4. Solution to the Diffusion Equation for a Semi- infinite Slab. 300'C,
1.5 hours, & - 5.2 X 104 V/cm and Q, = 3 X 1018 cm- 3 .

10 D 10-20 cm 2/sec

101 Is D • l-20cm2/sec

z -05 x 10 2 1cm 2/sec

U -- - D= 10"2 1cm 2/sec TEMP: 100 0 C

TIME: I YR.
Cs 3 x 10 18 cm-3
EalO6 Wcm

0 1 2 3 4 5 6

DIST (kA)

Figure C.5. Solution to the Diffusion Equation for a Semi- infinite Slat). 100"C,
t - one year , " - 10 G "/cm and C, 3 X 1018 cm- 3 .
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Figure C.6. Solution to the Diffusion Equation for a given film thickness. 3000C,
1.5 hours, E = 5.2 X 104V/cm, Ca = 3 X 1018 cm- 3 and a film
thickness of 5700 A.
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Cs=3 x10 18cm'3
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z5700 A
0 1 2 3 4 5 6
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4 Figure C.7. Solution to the Diffusion Equation for a given film thickness. 100°C,
t = one year , - 10 6V/cm, Ca s 3 X 1018Cm- 3 and a film

thickness of 5700 A.
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